
1.  Introduction
A magnetic field can trap plasma populations; control the transfer, conversion, and release of energy in 
planetary magnetospheres; play a key role in the spatial distribution of the plasmas and development of 
instabilities, as well as control the evolution of substorms and storms. The measurement of the magnetic 
field in space has recently been carried out using a limited number of sometime collocated spacecraft in 
various locations. It is both important and possible to establish the continuous distribution of the mag-
netic field, based on these multipoint magnetic observations. With two-point measurements, the gradient 
of the magnetic field along the spacecraft (S/C) separation line can be obtained; With three-point mag-
netic measurements, the magnetic gradient within the S/C constellation plane can be determined; while 
with four or more distributed magnetic measurements, the three dimensional (3-D) linear magnetic gra-
dient (also called as the first order gradient or Jacobian matrix) can be estimated (Chanteur, 1998; Dunlop 
et al., 2015, 2016, 2018, 2020; Harvey, 1998; McComas et al., 1986; Shen, Rong, Dunlop et al., 2012; Shen, 
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Rong, & Dunlop, 2012; Vogt et al., 2008). In order to get the quadratic magnetic gradient (also called as the 
second order gradient or Hessian tensor), 10 S/C magnetic measurements are needed (Chanteur, 1998).

In the past, magnetic measurements have been performed with two S/C (ISEE-1/2, DSP, RBSP, ARTEMIS, 
etc.) (Angelopoulos,  2008; Z.-X. Liu et  al.,  2005; Ogilvie et  al.,  1977; Shen & Liu,  2005), three S/C con-
stellations (THEMIS, Swarm) (Angelopoulos, 2008; Friis-Christensen et al., 2006), and four S/C constel-
lations (Cluster and magnetospheric multiscale [MMS]) (Balogh et al., 2001; Burch et al., 2016; Escoubet 
et al., 2001; Russell et al., 2016). However, presently 10 S/C magnetic field observations in space are still on 
the drawing boards. Deducing the various orders of magnetic gradients fully with a limited number of S/C 
observations remains an important unsolved problem.

Attempts to partially solve this problem have used physical constraints to assist the complete determination 
of the magnetic gradients (Vogt et al., 2009). The symmetries in plasma structures and the electromagnetic 
field laws can also be useful. It has been found by Shen, Rong, Dunlop et al. (2012) that, for a force-free 
magnetic structure in which the current is field-aligned, the 3-D magnetic gradient can be completely ob-
tained with 3 spacecraft magnetic measurements. In their derivation, Ampere’s law    0B j and the 
solenoidal condition of the magnetic field    0B  are used to reduce the equations. Furthermore, if the 
force-free magnetic structure is steady and moving with a known relative velocity, only two S/C magnetic 
observations are needed to gain the complete nine components of the linear magnetic gradient (Shen, Rong, 
& Dunlop, 2012). Y. Y. Liu et al. (2019) have suggested a method to get the nonlinear distribution of the 
magnetic field in a stationary plasma structure by fitting the second-order Taylor expansion based on 4 S/C 
magnetic measurements and one S/C current density observation, where Ampere’s law and the solenoidal 
condition of the magnetic field was also used. Torbert et al. (2020) have successfully obtained the 3D distri-
bution of the magnetic field by using the four-point magnetic and particle/current density measurements 
of MMS. In their exploration, they have applied a fitting method to the magnetic field to the third order 
in magnetic gradient (( )  m l k jB 0), called the “25-parameter fit.” In addition, the second order derivative 
of the magnetic field at the minimum variation direction in the local MVA characteristic coordinates was 
regarded as zero. Denton et al. (2020) have reconstructed the magnetic structures with a fitting method in 
the local characteristic coordinates system (Shi et al., 2005) and explored the contributions of various linear 
and quadratic terms in detail. However, there still exists no explicit solution to the determination of the 
quadratic magnetic gradient based on multiple spacecraft measurements.

With multiple S/C magnetic observations, geometrical features of the magnetic field lines can be obtained 
(Rong et al., 2011; Shen et al., 2003, 2011, 2014; Shen, Liu, et al., 2008; Shen, Rong, et al., 2008; Lavraud 
et al., 2016; Xiao et al., 2018). The geometry of the magnetic field lines (MFLs) so obtained includes the tan-
gential direction (just the direction of the magnetic vector), principal direction (along the curvature vector), 
binormal vector (the normal of the osculating plane of one MFL), curvature, and torsion. However, the tor-
sion of the MFLs has not been obtained in these previous methods. The reason for this is that the torsion of 
the MFLs depends on the quadratic magnetic gradient, which needs 10-point S/C magnetic measurements 
(Chanteur, 1998) to be deduced. Therefore, it is necessary to explore the calculation of the torsion of MFLs 
based on observations of a limited number of S/C, in order to gain this more complete picture of MFLs in 
space.

This problem is addressed herein, where an explicit algorithm has been derived to estimate the quadratic 
magnetic gradient as well as the complete geometrical parameters of the MFLs based on measurements 
with a limited number of spacecraft. This approach has a wide range of applications for analyzing the mag-
netic structure in space plasmas.

In Section 2 and Appendices A and B, the algorithm for the quadratic magnetic gradient is derived. In Sec-
tion 3 and Appendix C, the general differential geometric properties of magnetic field lines are addressed. 
In Sections 4, the new approach has been demonstrated on the Harris current sheets and cylindrical flux 
ropes in comparison with the analytical features of these two kinds of magnetic structures illustrated in 
Appendices D and E. Section 5 presents an actual application of this algorithm for analyzing the magnetic 
structure of one flux rope observed by MMS. Section 6 gives the summary and discussions.
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2.  The Estimators for the Linear and Quadratic 
Gradients of Magnetic Field
It is very important to obtain the quadratic gradient of the magnetic field. 
With it, we can grasp more accurately the structure of the magnetic field 
and, uncover the complete geometrical structure of the MFLs, including 
the Frenet coordinates and curvature, as well as the torsion. In this sec-
tion, we obtain the explicit estimator of the quadratic magnetic gradient 
based on magnetic field and current density measurements from a mul-
ti-S/C constellation.

We present the derivation of this algorithm as follows.

The configuration of the four-spacecraft constellation (Cluster or MMS) 
is illustrated in Figure 1.

In the S/C constellation frame of reference, the simultaneous position 
vectors of the four spacecraft are     1, 2, 3, 4r  and the position vector 
of the barycenter of the four S/C is

r r
c





1

4 1

4


 .� (1)

In this study, the Greek subscripts or superscripts apply to spacecraft and     , , , 1, 2, 3, 4; while the 
Latin subscript c indicates the barycenter.

The apparent motional velocity of the magnetic field structure relative to the S/C constellation reference 
frame is denoted as V , which may vary from point to point (Hamrin, et al., 2008). The velocity of the S/C 
constellation relative to the proper reference frame of the magnetic field structure is   V V . We establish 
the Cartesian coordinates ( 1 2 3, ,x x x ) in the S/C constellation reference, and choose the 3x  axis along the 
direction of   V V  with its basis  3ˆ / Vx V . The configuration of the S/C constellation is characterized 
by the volume tensor, which is defined (Harvey, 1998; Shen et al., 2003) as

R r r r rkj k ck j cj    



1

4 1

4


  .� (2)

Here, and in the text below, we apply some Latin subscripts or superscripts (other than c) to denote Carte-
sian coordinates with , , , , , 1, 2, 3i j k e m n  and , , , 1, 2p q s r .

�(i)	� The linear gradients of the magnetic field and current density at the barycenter

As the MMS S/C cross a magnetic structure, the four S/C measure the magnetic field with high accuracy 
and time resolution (Burch et al., 2016; Russell et al., 2016). The magnetic field observed by the  th S/C at 
position r  is

      , , 1, 2, 3, 4.t tB B r� (3)

The MMS S/C can measure the distributions of ions and electrons with sufficient accuracy to yield the local 
current density (Pollock et al., 2016; Torbert et al., 2015, 2020) as

      , , 1, 2, 3, 4.t tj j r� (4)

To obtain the magnetic field and its first order gradient at the barycenter of the MMS constellation, we first 
neglect the second order magnetic gradient under the linear approximation. With four S/C, simultaneous 
magnetic observations, the magnetic field and its linear gradient at the barycenter of the S/C constellation 
can be obtained with the previous methods established by Harvey (1998) and Chanteur (1998). In order 
to suppress the fluctuating components in the magnetic field and obtain the magnetic gradient at higher 
accuracy, we make use of the time series of the magnetic observations by the four S/C to get the magnetic 
gradient with the method first put forward by De Keyser, et al. (2007). In their approach, the time series 
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Figure 1.  The exploration of the magnetic field in space in the S/C 
constellation frame of reference. ( 1 2 3, ,x x x ) are the Cartesian coordinates in 
the S/C constellation reference frame. The S/C constellation is composed 
of four spacecraft (the number of spacecraft can be more 4), whose 
barycenter is at the point C. C has been set as the origin of the coordinates 
in the constellation reference frame. The apparent motional velocity of 
the magnetic field structure relative to the S/C constellation reference is 
V . Conversely, the velocity of the S/C constellation relative to the proper 
reference of the magnetic field structure is   V V .
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data of the four S/C do not need to be synchronized. Appendix A gives the explicit estimator of the linear 
gradient of magnetic field in space and time with corrections from the quadratic gradients.

Based on Equations A14 and A15 in Appendix A, the magnetic field and its first order derivatives at the 
barycenter of the MMS constellation under the linear approximation are as follows.

B t

n

B t
c c

n

a ai

a

i, , ,r r    



1

4 1

4

� (5)
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4
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1

4
� (6)

Here, n neighboring measurements from each spacecraft are chosen, totally N = 4n data points included. As 

shown in Equation A2, the spacetime coordinates at the central point are x
N

x
c
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. The barycenter coordinates (Harvey, 1998) have been used, so that  0i
cx  constantly. 

1R  is the 

inverse of the general volume tensor R  with the definition R

N
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N

 as shown 

in Equation A9.

The above Equations 5 and 6 in the vector format are
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These equations will yield the time series of magnetic field  ,c ctB r , its time derivative   ,t c ctB r  and first 

order gradient   ,c ctB r  at the barycenter of the S/C constellation.

In the above Equations 5–8, the accuracy is found to first order due to omission of the second order gradi-
ents. We will correct the magnetic field and its first order derivatives at the barycenter with the second order 
derivatives of the magnetic field according to Appendix A and will further obtain the corrected quadratic 
magnetic gradient by iteration (see (vii) later). The corrected magnetic field and its first order gradient at the 
barycenter will then have second order accuracy.

In this investigation, we have neglected the magnetic gradients with orders higher than two, so that the 
current density can be regarded as linearly varying. According to Equations A14 and A15 in Appendix A, 
the current density at the barycenter is

j j r r
c c c

a

n

a a
t

n

t     

, , ,

1

4 1

4

j� (9)

and the linear gradient of the current density at the barycenter is
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of which the component form is

     

 


  


  
 

j t R
n

x x j tk c c
a

n

a k a a, , .r r1

1

4

0

1

4
� (10a)

Generally, the electron and ion measurements have different time resolutions. So that the electron and ion 
current densities and their linear gradients at the barycenter can be first calculated separately with Equa-
tions 9 and 10, and finally added to obtain the total current density and its linear gradient at the barycenter.
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�(ii)	� The second order time derivative of the magnetic field and the first order time derivative of the mag-
netic gradient

With the time series of magnetic field  ,c ctB r  and its first order time derivative   ,t c ctB r  at the barycenter 

obtained in (i), it is easy to get the second order time derivative of magnetic field   t ,t c ctB r  at the bary-
center, where    t / t.

The gradient of the time derivative of the magnetic field is equivalent to the time derivative of the magnetic 
gradient, that is,

          
, , .j t i t j iB t B tr r� (11)

Therefore, at the central point  ,c ct r ,

               j j j, , , .t i c c t i c c i c c
c

B t B t B t
t

r r r� (12)

�(iii)	� The transformations between the temporal and spatial gradients of the magnetic field in different ref-
erence frames

This approach will make use of the proper reference frame of the magnetic structure, so as to determine the 
second order gradient in the direction of the apparent motion of the magnetic structure, that is, the longi-
tudinal quadratic gradient of the magnetic field. To do this, we need to find the apparent velocity V  of the 
magnetic structure relative to the spacecraft constellation. For space plasmas, this relative velocity is much 
less than the speed of the light in vacuum, that is,  cV . Shi et al. (2006) have first obtained the velocity 
of the magnetic structure relative to the spacecraft with the temporal and spatial variation rates of the mag-
netic field under the assumption of stationarity. Hamrin et al. (2008) have obtained the apparent velocity 
of the magnetic structure using a proper reference frame. Here we give a concise discussion on the trans-
formations between the temporal and spatial gradients of the magnetic field in different reference frames.

The time and space coordinates (t, r) in the S/C constellation reference frame and the corresponding time 
and space coordinates ( t , r ) in the proper reference frame of the magnetic structure obey the Galilean 
transformations, that is,  t t,   r r Vt  (see also Figure 1) (The Eulerian description is applied in each 
reference frame.). The magnetic fields observed in the S/C constellation frame and the proper frame of the 
magnetic structure are  ,tB r  and    ,tB r , respectively. As  cV ,      , ,t tB r B r . It is obvious that the 

magnetic gradient in these two reference frames are also identical, that is,

       , t , .tB r B r� (13)

The relationship between the time derivative of the magnetic field in the S/C constellation, 
 



,t

t

B r
, and 

time derivative of the magnetic field in the proper reference frame of the magnetic structure, 
   



,t

t

B r
, is

       
   

    
   

      
  

 


, , ,
, ,

t t tt t
t t t t t

B r B r B r r B r�

or

     









   



, ,
, .

t t
t

t t

B r B r
V B r� (14)

which is the same formula as given by Song and Russell (1999) and Shi et al. (2006).

In the proper reference frame of the magnetic structure, 
 






 ,
0

t

t

B r
, thus

     


   


,
, , .

t
t t

t

B r
V r B r� (15)
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At the barycenter of the S/C constellation,

     


   


c,
, , .c c

t
t t

t

B r
V r B r� (16)

The component form of the above formula is

     


   


,
, , .

j c
i c i j c

B t
V t B t

t

r
r r� (16a)

The above equation has a unique solution of the apparent velocity and a proper reference frame can be 

found only if   , 0tB r . Thus the apparent velocity of the magnetic structure relative to the S/C con-

stellation is (Hamrin et al., 2008; Shi et al., 2006)

              
1

i i, , , , .c c t j c cji
V t V t B t tr r r B r� (17)

It is noted that the apparent velocity of the magnetic structure can vary with time. Equation 17 is applicable 
for magnetic structures with  cV , whether steady or unsteady.

V  can be varying with time. Taking the time derivative of Equation 16, it reduces to

                  t t, , , , , .t t c c c c ct t t t tVB r r B r V r B r�

Then

                  c t, , , , , .t c c t t c ct t t t tB rV r B r V r B r� (18)

Because    c,t t tB r  and    ,t ctB r  have been yielded in (ii), the apparent acceleration   ,t ctV r  of the 

structure as viewed in the constellation reference frame can be readily obtained.

/ VV  is a characteristic, directional vector, so that we can define  / VV  as the directional vector of the 3x  
axis in the S/C constellation reference frame, that is,  3ˆ /x VV .

We can further investigate the transformation between the time derivatives of the magnetic gradients in 
the two different reference frames. Similarly to the linear magnetic gradients in Equation 13, the quadratic 
magnetic gradients in the S/C constellation frame and the proper frame of the magnetic structure are iden-
tical, that is,

          , , .t tB r B r� (19)

The relationship between the time derivative of the magnetic gradient in the S/C constellation frame, 

   ,t tB r , and the time derivative of the magnetic gradient in the proper frame of the magnetic structure, 

       ,t tB r , satisfies

    
  

 
   , ,t t

t t
B r B r

�

�

   
     


        


, , .t t

t
B r V B r�

Considering 
 






 ,
0

t

t

B r
 in the proper reference frame and Equation 19, this reduces to

   
    


, , ,t t

t
B r V B r� (20)

     
 


   

 


      
 

, ,t t t
t t t

rB r B r
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which is the formula relating the time derivative of the linear magnetic gradient to the quadratic magnetic 
gradient in the S/C constellation reference frame. With this general formula the gradient of the linear mag-
netic gradient in the direction of apparent velocity is readily obtained as shown below in (iv).

�(iv)	� The longitudinal gradient of   , ctB r

Based on Equation 20, the gradient of the linear magnetic gradient along the 3x  direction at the barycenter 
cr  satisfies

   
   

 3 , , ,c t cV t t
x

B r B r� (21)

or

       3
1, , .k m c t k m cB t B t
V

r r� (22)

The right hand side of the above equation can be obtained from Equation 12, so that nine components of 
the quadratic magnetic gradient can be obtained. Formula 22 is applicable for both steady and unsteady 
magnetic structures.

Furthermore, due to the symmetry of the quadratic gradient,

    p 3 l 3 p l,B B� (23)

of which the right hand side is given by Equation 20, so that 6 more components of the quadratic magnetic 
gradient can be obtained. Now only     p q l , 1,2, 1, 2, 3B p q l  are to be found, which involve  4 3 12 
components. Considering the symmetry of the quadratic magnetic gradient,     p q l q p lB B , only 
 3 3 9 of these components are independent.

The gradient of the current density will be needed for the estimation of the remaining components of the 
quadratic magnetic gradient.

�(v)	� Three components and two constraints for the quadratic magnetic gradient using the gradient of cur-
rent density

From Ampere’s law, we get the constraints that

      ,B j�

with which we can obtain some components of the quadratic magnetic gradient if j is known (for sim-
plicity, we replace 0 j by j.). If the electromagnetic fields are strongly varying,      2 /c tj B E , with 
the electric displacement current included. However, in this investigation we only consider the slow-vary-
ing electromagnetic fields with the limitation     2 /c tB E , which is commonly satisfied in large 

scale space plasmas. The component equation      3 3B j is not an independent constraint due to 
Equation 22. It is a surplus condition, which we have not used because Equation 22 can yield the longi-
tudinal gradient directly already. Furthermore,          0j B , so that the gradient of the current 
density only provides 9 − 3 − 1 = 5 independent constraints.

The transverse quadratic gradient of the longitudinal magnetic field, that is, the quadratic gradient of the 
magnetic component 3B  in the plane orthogonal to the direction of motion (or 3x  direction) satisfies

               3 3 3 3 3 3 ,p q p q q q p lq l qB B B B j B� (24)

where again Ampere’s law   B j has been used. Thus, Equation 24 leads to

           3 3 3, , , ,p q c lq p l c p q cB t j t B tr r r� (25)

where 
p

j
q
 is used. The above formula yields the transverse quadratic magnetic gradient of the longitudi-

nal magnetic field and contains three independent components of the quadratic magnetic gradient at the 
barycenter.
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There are still 6 components of the quadratic magnetic gradient remain-
ing to be determined, that is,   p ,q s cB t r , which are the transverse quad-
ratic gradients of the transverse magnetic field.

Two additional constraints can be obtained from        3 1 2 2 1 , , 1,2p pj B B p q 
         3 1 2 2 1 , , 1,2p pj B B p q , that is,

      
      






1 1 2 1 2 1 1 3

2 1 2 2 2 1 2 3

B B j

B B j

(26)

(27)

 �

which is at the barycenter.

Based on Ampere’s law, therefore, three more components of the quad-
ratic magnetic gradient and two constraints on it can be obtained with the 
gradient of current density as shown in Equations 25–27.

Now four constraints are to be found for the complete determination of 
the quadratic magnetic gradient.

�(vi)	�The last four constraints

The magnetic field is divergence-free, that is,    0B . Therefore

  j 0.k kB� (28)

It is noted that the sum over k is made in the above formula. Because 
  3 0k kB  is a dependent constraint in Equation 22, there are only two 
independent constraints, that is,     p 0, , 1,2k kB p q . So that

       1 1 1 1 2 2 1 3 3,B B B� (29)

       2 1 1 2 2 2 2 3 3,B B B� (30)

where        p 3 3 3 p 3 p 3
1

tB B B
V

 according to Equation 22.

There are therefore only two constraints left to be found.

Using magnetic rotation analysis (MRA) (Shen et al., 2007, see also Appendix B), the remaining two con-
straints can be obtained from the properties of the magnetic field. As shown in Appendix B, based on MRA, 
the magnetic rotation tensor has three characteristic directions ( 1X̂ , 2X̂ , 3X̂ ), as illustrated here in Figure 2. 
The coordinate line 3X  is along 3X̂ . In the third characteristic direction 3X̂ , the magnetic unit vector ˆ

B
Bb  

has no rotation, and the square of the magnetic rotation rate is

 
 

 3 3
0.

ˆ

X X
b̂ b� (31)

So that




 3
0.

X
b̂� (32)

Since  
 3

ˆ
0

X
b  at each point of the coordinate line 3X  (as indicated in Figure 2), we have

 


 3 3
0.

X

ˆ

X
b� (33)

Since the magnetic unit vector b̂ obeys  ˆ ˆ 1b b , the above constraint contains only two independent com-
ponent equations, which can be chosen as

 
 

 
p

3 3
0, 1, 2.

X X
B

p
B

� (34)
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The three characteristic directions ( 1X̂ , 2X̂ , 3X̂ ) have a relationship with the base vectors ( 1x̂ , 2x̂ , 3x̂ ) of the 
S/C coordinates ( 1 2 3, ,x x x ), as follows:

i ,ˆ ˆij jaX x� (35)

where the coefficients        ij i cosˆ ˆˆ , ˆj i ja X x X x . If we assume a vector   X ˆˆi i j jxX x X , then 

  i
ˆX Xˆj j i ji jx aX x .

The first order partial derivative obeys:

   
  

   3
3 3

,k
k

k k

x a
X X x x�

and the second order partial derivative obeys:

      
         

3 3j 3 3
3 3

.
X X k k j

k j k j
a a a a

x x x x
�

Generally, 3X̂  is varying slowly in space and 

 3 j

k
a

x
 is a small quantity, thus 


 3 j

k
a

x
 is omitted in the above 

equations. Therefore, Equation 34 reduces to

  
      

3 3 k 0, 1, 2.p
k j j

B
a a p

Bx x
� (36)

Finally, we show below that we can find   p ,q s cB t r  by combining Equations 26, 27, 29, 30 and 36.

We also can investigate Equation 36 in more detail. For simplicity, we can adjust the coordinates  1 2 3, ,x x x . 
We keep the 3x  axis unchanged with its basis  3ˆ / Vx V , and rotate 1x  and 2x  axes around the 3x  axis such 
that the coordinate base vector 1x̂  is orthogonal to both 3x̂  and 3X̂ , that is,





3 3

1
3 3

ˆ ˆˆ ,ˆ ˆ
X xx
X x� (37)

(and as illustrated in Figure 2). Thus

  31 3 1 0.ˆ ˆa X x�

Then Equation 36 becomes

        
                   

2 2
2 2
32 33 33 322 2

3 22 3
2 .p p pB B B

a a a a
B B x x Bx x

� (38)

All the terms in the right hand side of the above equation are known. With Equation 59 developed in the 
next section, we can express the second order gradients of the components of the magnetic unit vector on 
the two sides of Equation 38 in terms of the magnetic gradients. With Equation 59, we get

      
                   

1 3 2 3 3
2 2 p 2 2 2 p 2 2 2 2 2

2 2
2 3 ,p

p i i p p i i
B

B B B B B B B B B B B B B B B B B
x x B

� (39)

or

 








       
    

 



2 2
1

2 2
3

2 2

3
3 2 2 3 2

B

B

B B B B B B

B B B B

p

p p s s

p
BB B B B B B B B B B B

p p p i i

          2
2 2

3
2 2

3
2 23 .

� (39a)
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The second expression on the right hand side is known already. Substituting (39a) into (38), we get

B B B B B B

a

a x

B

B

a

s

p s s

p



     











 1

2 2

1

2
3

2 2
33
2

32
2

2

3
2

2
p

333

32

3 2

3
3 2 2 3

2
2 2

3
2 2

3
2 3

a

B

B

B B B B B B B B B B B B B

p

p p

 

             
p pp i i

B B 



2 2

�
(40)

where p = 1, 2. All the terms in the right hand side of the above equation can be determined with (59), (8), 
(22), (23), and (24).

Therefore, combining Equations 26, 27, 29, 30 and 40, we can determine   p ,q s cB t r .

Actually, with the two equations in Equation 40, we can completely find the solution   2 2 s , cB t r , (s = 1, 2).

Furthermore, with Equations 30 and 27, we can get   1 2 s , cB t r , (s = 1, 2), that is,

          1 2 1 2 1 1 2 2 2 2 3 3 ,B B B B� (41)

and

         1 2 2 2 1 2 2 2 1 2 3.B B B j� (42)

The above two equations are valid at the barycenter.

In addition, from Equations 29 and 26, we can obtain   1 1 s , cB t r , (s = 1, 2), that is,

       1 1 1 1 2 2 1 3 3,B B B� (43)

and

      1 1 2 1 2 1 1 3.B B j� (44)

The above two equations are also valid at the barycenter.

So far, we have obtained all the components of the quadratic gradient  
c

B  at the barycenter. The accu-
racy of the quadratic gradient is to first order, just as that for the magnetic gradient.

�(vii)	�Recalculating the magnetic gradients by iteration

In order to enhance the accuracy of the magnetic quantities, we can correct the estimate of the field and 
its linear gradient at the barycenter with the quadratic magnetic gradient obtained above (based on Equa-
tions A8 and A13 in Appendix A). Subsequently, we can further go through the above steps (ii–vi) to get the 
corrected quadratic magnetic gradient with better accuracy.

The procedure is as follows:

By Taylor expansion as in Equation A3, the magnetic fields measured by the four spacecraft are

               
          

1, , , , .
2i a a i c c i c c i c ca a aB t B t x B t x x B tr r r r� (45)

Based on Equation A8 in Appendix A, we obtain the magnetic field at the barycenter, corrected by the 
quadratic magnetic gradient, as:

B t

n

B t R B t
c c

a

n

a a i c ci i, , , ,r r r         



1

4

1

21

4


 � (46)

where, the general volume tensor R  is as defined in Equation A9.

From Equation A13 in Appendix A, we get the first order magnetic gradient at the barycenter corrected 
from the quadratic magnetic gradient as

             
  

 

         
 1 1

i ia
a

1 1B , B , , .
2c c c a a i c ct x x t R B t

N

N
r R r R r� (47)
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Furthermore, we can perform the above steps (ii–vi) to obtain the corrected quadratic magnetic gradient 
using these updated estimates. The quadratic magnetic gradient obtained in this iterative sense has a higher 
accuracy, while errors in the magnetic field, its linear gradient and the apparent velocity of the magnetic 
structure at the barycenter, are of second order in L/D, where L is the size of the S/C constellation and D is 
the characteristic scale of the magnetic structure.

We can call this new method as Nonlinear Magnetic Gradient (NMG) algorithm for convenience.

To summarize the NMG algorithm, we proceed as follows

�(a)	� Estimate the magnetic field cB ; the first order magnetic gradient  
c

B , and the time variation rate 
 
  ct
B  of the magnetic field, at the barycenter and under the linear approximation; as in Equations 7 

and 8. Estimate the gradient of the current density at the barycenter   , ctj r , as in Equation 10.

�(b)	� Determine the apparent velocity V  using the time variation rate 
 
  ct
B  of the magnetic field and the first 

order magnetic gradient  
c

B  with Equation 16a or 17 and define the 3x  coordinate with  33ˆ / Vx V ; 

determine the three characteristic directions ( 1 2 3
ˆ ˆ, ˆ,X X X ) using MRA, and define the coordinate base 

vector 



3 3

1
3 3

ˆ ˆˆ
ˆ ˆ
X xx
X x

, such as to fix the Cartesian coordinates  1 2 3, ,x x x  in the spacecraft constellation 

reference frame.

�(c)	� Calculate the time variation rate  


 ct
B  of the linear magnetic gradient at the barycenter, so as to 

obtain the components of the quadratic magnetic gradient   3 c
B  and  3 c

B , as in Equations 22 
and 23.

�(d)	� Combine Ampere’s law and the first order gradient of the current density   , ctj r  to calculate the trans-

verse quadratic gradient of 3B , that is,    p 3 , 1,2qB p q , as in Equation 25.

�(e)	� Solve the equations  


 3 3
0ˆ

X X
b , or Equation 38 equivalently, derived by MRA, so as to obtain the 

components:    2 2 p 1,2B p .
�(f)	� Determine the remaining four components of the quadratic magnetic gradient,        1 2 p 2 1 pc c

B B  

and   1 1 p c
B ,   1,2p , using the equation      0B  derived from the divergence free condition of 

the magnetic field and the equation      B j from Ampere’s law, as in Equations 41–44.
�(g)	� Revise the magnetic field cB  and the first order magnetic gradient  

c
B  with the quadratic magnetic 

gradient     2
c

G B  obtained initially, as in Equations 46 and 47, and perform the above steps (b–f) 
once again, so as to get the corrected quadratic magnetic gradient  

c
B , as well as the corrected ap-

parent velocity V  of the magnetic structure.

It should be noted that the magnetic field, the linear magnetic gradient and the quadratic magnetic gradient 
are all identical in different reference frames. We will test all these estimators in detail in Section 4.

Given the magnetic field cB , the first order magnetic gradient  
c

B  and the quadratic magnetic gradient 

 
c

B , the complete geometry of the magnetic field lines of the magnetic structure can be determined. We 
will find the estimators for the geometrical parameters of the MFLs in the next section.

3.  Determining the Complete Geometry of Magnetic Field Lines Based on 
Multiple S/C Measurements
The geometry of the MFLs plays a critical role in the evolution of the space plasmas. In this section, we will 
extract the estimators for the complete geometry of the MFLs, from the linear and quadratic gradients of the 
magnetic field estimated in Section 2.
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3.1.  The Natural Coordinates and Curvature of the MFLs

The geometry of the magnetic field lines is illustrated in Figure 3. The 
directional magnetic unit vector is ˆ / Bb B , which is also the tangential 
vector of the MFLs. The MFLs are usually turning, and the bending of 
MFLs is characterized by the curvature vector, that is,

    
d ,

ˆ ˆ ˆ
ds
bκ b b� (48)

where “s” is the arc length along the MFLs.

Shen et al. (2003, 2011) first presented the estimator of the curvature of 
MFLs, which has found many applications in multi-point data analysis. 
Here, a brief description of it is given and we will then investigate further 
the complete geometry of the MFLs as well as the explicit estimators.

The gradient of the magnetic field  
c

B  at the barycenter from mul-
ti-spacecraft measurements has already been expressed in Section 2.

The gradient of the magnetic strength B = |B| is

    21 1 ,
2i i j i jB B B B

B B
� (49)

while at the barycenter of the S/C constellation,

     1 .i c cj i jc c
B B B B� (50)

Similarly, the gradient of the unit magnetic vector b̂ is

      j 1 2
j j .i j i i i

B
b B B B B B

B
‐ ‐� (51)

with Equation 49, the above Equation 51 becomes

    1 1
j m mb .i j i j ib B B B b B‐ ‐� (52)

Hence, the gradient of the unit magnetic vector b̂ at the barycenter is

         1 1
m mb .i j i j j i cc c

b B B B b B‐ ‐� (53)

All the coefficients on the right hand side of the above formula involve values at the barycenter (Shen, 

et  al.,  2003): B

N

B
c

N

ii   
1

1  ,    /i ci cc
b B B . Equation  53 obeys the condition that:    0j i j c

b b , 

which is required by the constraint  ˆ ˆ 1b b .

The curvature of the MFLs at the barycenter is therefore

            1 1
j j j m m .cj i i i i i i cc c

b b B b B B b b b B� (54)

All the coefficients on the right hand side of the above formula involve values at the barycenter. Equation 54 
is the estimator of the curvature of the MFLs based on the multi-S/C magnetic measurements. It is noted 
that there can be no field line crossing through the point where B = 0; thus, there is no need to calculate 
the curvature from Equation 54. It is noted that Equation 54 satisfies   c c 0ˆ

c j cjbb κ , indicating that the 
obtained curvature vector is orthogonal to the magnetic field.

The radius of the curvature of the MFLs is

c 1 / .cR� (55)

The principal normal vector of the MFLs is

 c c/ .K̂ κ κ� (56)
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Figure 3.  Demonstration on the geometry of the magnetic field lines. 
ˆ / Bb B  is the magnetic unit vector; κ is the curvature vector of the 

magnetic field line, K̂ and N̂ are the principal normal and binormal, 
respectively. The magnetic field line is also twisting with torsion.
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The binormal vector of the MFLs is




   ,
ˆˆ ˆ ˆ c

c

bN b K κ
� (57)

The above expressions collectively describe the estimators of the magnetic curvature analysis approach 
(Shen et al., 2003, 2011), where  ˆ , ,ˆ ˆb K N  constitute the natural coordinates, or the Frenet frame (trihedron). 

The unit magnetic vector b̂, principal normal K̂, and binormal N̂ are orthogonal to each other.

Usually, the MFLs not only bend, but also twist, such as the helical MFLs manifested in a flux rope. The 
twisting of the magnetic field is closely related to the magnetic helicity of the global magnetic structure, 
which is generally conserved in space (Berger, 1999). The local twist of the MFLs can be described quanti-
tatively by the torsion. In order to get the complete geometry of the MFLs, therefore, the torsion should be 
known. The torsion of the MFLs is defined as


  

      
2

2
1 d 1 1 .

ˆ ˆˆ ˆd d
ds dsds

b NN Nκ κ� (58)

Therefore, the quadratic gradient of the magnetic field B is essential for the calculation of the torsion of 
the MFLs.

We now investigate the relationship between the torsion of the MFLs and the quadratic gradient of the unit 
magnetic vector b̂; as well as with the quadratic magnetic gradient B.

To do this, we need to first deduce the expression of the quadratic gradient of the unit magnetic vector in 
terms of the linear and quadratic magnetic gradients.

The quadratic gradient of the unit magnetic vector b̂ is

        1 1
l lk i j k i j j ib B B B b b B�

                 1 1 1 1
l l l lk i j k i j k j i j k iB B B B B b b B B b b B�

�

� (59)

Thus, the estimator of the quadratic gradient of b̂ at the barycenter is expressed as

                 
k i j k c i j

c
j k c i c kb B B B B b b B B B b B

c
m m m

2 2 2
3 jj

c
i c

j k i m c k i j j k i

B

B b B B B B B b b

   
              

m

m c c
m

2 1 1
BBm c

  .

� (60)

Based on this definition, the torsion of the MFLs is


 



     

       

1 1

1

d”
ds

b b b N

b b b b b b N

j j k k i i

j j k k i j k j k i i

N

.

� (61)

So that the torsion of the MFLs at the barycenter of the S/C constellation is

                  
1 .c i j j k k i j k j k icc c
N b b b b b b� (62)

The above formula is one of the estimators of the torsion of the MFLs that is dependent on the linear and 
quadratic gradients of the unit magnetic vector b̂.

           

    

  

 

B B B B B B B b b B

B b b B B

k i j k i j k j i

k j i

2 1 2

1 1

l l

l l
bb b B B b b Bj k i j k i     

l l l l

1

          

   

  

 

B B B B B B b b B B

B b B B B b

k i j k i j j k i

k j i

2 1 2

2 2

3 l l

l l jj k i j k iB B B b b B     
l l l l

1
.
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By substituting Equations 52 and 59 into Equation 61, the torsion of the MFLs is obtained as

          1 3 1 3 ,j i i k k j j k i k i jB N B B B B N B B B� (63)

where the condition b 0j jN  has been used. Appendix C presents another verification of the expression 
(63) for clarity. It seems that Equation 63 is invalid as B = 0 or   0. However, there is no field line as B = 0, 
while for   0, the field line is a straight line and its torsion has no fixed value, and thus is meaningless.

Therefore, the torsion of the MFLs at the barycenter can be written as

               1 3 1 3 .c j i i k k j j k i k i jc c c
B N B B B B N B B B� (64)

All the coefficients on the right hand side of the above formula involve values at the barycenter. Equation 64 
is another estimator of the torsion of the MFLs, expressed in terms of the linear and quadratic gradients 
of the magnetic field. The two different estimators of the torsion of the MFLs (62) and (64) are obviously 
equivalent.

4.  Demonstrations
In this section, the estimators put forward in Sections 2 and 3 will be demonstrated for model current sheets 
and flux ropes, which can occur in the magnetosphere, in order to verify the validity and accuracy of this ap-
proach. A one-dimensional Harris current sheet model (Harris, 1962) and a Lundquist-Lepping cylindrical 
force-free flux rope model (Lundquist, 1950) are used for these two typical structures, respectively. Appen-
dices D and E present, analytically, the geometrical features of these two kinds of magnetic structures. The 
tests below have shown that the estimators of the quadratic magnetic gradients and the complete geometry 
of the MFLs are obtained with good accuracy compared to the models, so we expect they can find wide 
applications in investigating the magnetic structures and configurations in space plasmas with multi-S/C 
measurements.

The operative calculating steps can follow the steps (a–g) summarized at the end part of Section 2. The 
curvature and torsion of magnetic field lines can be obtained by Equations 54 and 64 (or 62) in Section 3.

4.1.  One-Dimensional Harris Current Sheet

For the one-dimensional Harris current sheet, the magnetic field can be formulated as Equation (D1) in 
Appendix D. In this test, the parameters of the current sheet are    0 50nT, 10nT, 20nT, h Ry z EB B B . 
As shown in Figure 4a, we set an arbitrary S/C constellation trajectory from (2, 2, 2) RE to (−2, −2, −2) RE 
during 100 s. The S/C constellation is assumed to be a regular tetrahedron with a separation of L = 100 km. 
The analytic values of the magnetic field and the current density at the barycenter of the four S/Cs are 
shown in panels (b) and (c) in Figure 4, respectively.

In this test, we have set n = 10, and make N = 4n = 40 points to calculate the spatial and temporal gradient 
of the magnetic field at the barycenter of the S/C constellation with the method in Appendix A. Therefore, 
we can get the spatial gradient of the vector field within the interval 5–95 s. Furthermore, the temporal and 
spatial scale corresponds to the time resolution of the field sampling (i.e., T = 1s) and the characteristic size 

of tetrahedron (L = 100 km). The magnetic field and the nonzero component 



xB
z

 of the linear magnetic 

gradient at the barycenter are derived with Equations 5 and 6 and shown in Figures 4b and 4d, respectively, 
which are in good agreement with their analytic values as given by Appendix A (the circles represent the re-
sults derived by the method, while the black solid line denotes the analytic results derived by theoretical for-

mula). The current density at the barycenter can also be derived with 



xB
z

 by Ampere’s law (   j B) and 

is shown in Figure 4c. Those values are again consistent with the analytic values. The apparent velocity of 
the current sheet relative to the S/C constellation can be derived by Equation 15. As shown in Figure 4e, the 
velocity Vz of S/C relative to the current sheet is within the range 252 ∼ 260 km/s (0.0408 ∼ 0.0398 Re/s), 
while the actual velocity is 257 km/s (0.0404 Re/s). Thus, the maximum relative error of the deduced veloc-

ity is 
0.0006 1.5%
0.0404

, which is approximately the order of L/h (∼0.016).
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With the derived linear magnetic gradient and current density gradient, the quadratic magnetic gradient 
of this current sheet model can be readily obtained. It should be noted that, among the components of the 

quadratic magnetic gradient, only 




2

2
xB

z
 is nonzero, while 

 

  

2 22

2 2 2, ,y zx b bb
z z z

 are nonzero among the compo-

nents of the quadratic gradient of magnetic unit vectors. The test is therefore focused on these components. 
Evidently, from Figures 4g–4j, there is extremely good agreement between the results obtained by the tech-

nique and the analytic values. As illustrated in Figure 4, 




2

2
xB

z
 (Figure 4f) and 





2

2
xb

z
 (Figure 4g) have bipolar 

signatures around the center of current sheet and are equal to zero at the center, while 




2

2
yb

z
 (Figure 4h) 

and 


2

2
zb

z
 (Figure 4i) show left-right symmetry around the current sheet center and reach a minimum at the 

center. These results are reasonable and in good agreement with the analytic results.

We have further obtained the geometry of the current sheet deduced by the method. The deduced curvature 
and torsion of the MFLs in the Harris current sheet are shown in Figures 4j and 4k. The magnetic curvature 
reaches a maximum at the center of current sheet, which indicates that the MFLs of the Harris current 
sheet bend most at the center. The torsion of the magnetic field line stays almost at zero, implying the MFLs 
in the Harris current sheet is planar (this agrees with the theoretical calculations in Appendix D). The order 
of the absolute error in the torsion is very small and less than 10−11  1

ER . This check is a very good validation 
of the new method.

After completing the above steps, iterative operation and error analysis are necessary and we will discuss 
these later.

4.2.  Two-Dimensional Force-Free Flux Ropes

In this subsection, we attempt to investigate the complete geometry of magnetic field lines for a classic 
force-free flux rope model. In this model, the three components of the magnetic vector in cylindrical coor-
dinates can be expressed (Lundquist, 1950) as:

       0 1 0 00, , ,r zB B B J r B B J r� (65)

where r is the distance from the central axis, 1 is the characteristic scale of the flux rope, and J  is the Bes-
sel function. In this test, we adopt 0 60B nT  and   1 / ER . Then the characteristic scale of the flux rope 
is  1 / 1 ED R . The trajectory of the 4 SCs with a separation of L = 100 km is set to be from (−2, 0, 0) 
RE to (2, 0, 0) RE during 100 s (indicating the actual structure velocity is 257 km/s [0.0404 Re/s]), which is 
shown in Figure 5a. The average magnetic field measured by four S/C is illustrated in Figure 5b, the bipolar 
signature of By and the enhancement of Bz around the flux rope’s center is apparent.

By repeating the same procedures as in Section 4.1, the quadratic magnetic gradient can be readily acquired 
(Figures 5c–5g). One can find that the results derived by the method are in good agreement with the ana-
lytic results obtained in Appendix E. The variations of curvature and torsion of the MFLs confirm that the 
magnetic topological structure is different from those of the current sheet (Figures 5h and 5i). It can also 
be seen from Figures 5h and 5i that the curvature of the MFLs contains a minimum, and the torsion of the 
MFLs contains a maximum, at the center. This indicates that the straighter and more twisted the MFLs, the 
nearer to the center of flux rope, implying the nonplanar and helical structure of the flux rope. This test 
shows that the results obtained by the approach are in good agreement with the analytical results, indicat-
ing that the estimators obtained in Sections 2 and 3 are reliable and applicable.
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Figure 4.  The comparison between the properties of 1-D Harris current sheet deduced form the estimators and those from the analytic calculations based on 
Appendix D. Panel (a) shows the current sheet configuration and the S/C trajectory in the current sheet reference frame; Panels (b) and (c) show the variation 
of magnetic field and current density, respectively; Panel (d) is the time series of the gradient of magnetic field; Panel (e) denotes the relative velocity of S/Cs 
to the current sheet; Panel (f) represents the quadratic gradient of magnetic field; Panels (g–i) denote the time series of the quadratic gradient of unit magnetic 
vector bx, by, bz, respectively. The magnetic field line curvature and torsion are displayed in Panel (j) and (k), respectively. The vertical black dashed line in each 
panel represents the center of current sheet. The solid lines in each panel are the accurate or theoretical results. The circles are the results obtained by the new 
method.



Journal of Geophysical Research: Space Physics

SHEN ET AL.

10.1029/2020JA028846

17 of 32

Figure 5.  The properties of magnetic field lines (MFLs) of 2-D flux rope. The relative path of S/Cs to the magnetic structure is sketched in Panel (a). Panel (b) 
shows the variation of the magnetic field; Panels (c–g) denote the time series of the quadratic gradient of magnetic field. The magnetic field line curvature and 
torsion are displayed in Panels (h) and (i). The vertical black dashed line in each panel represents the center of flux rope. The circles and solid lines represent 
the results inferred by our method and the accurate results, respectively.
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4.3.  Errors

The errors of the estimators put forward in this study may arise from two types of sources: the underlying 
measurement errors and the truncation errors. The key measurement errors include the error in the meas-
ured magnetic field B and that of the current density j derived from the plasma moment data (which will 
be seen in the application in Section 5). The truncation errors arise from terms beyond the differential order 
considered here and represent neglected behavior of the magnetic structure and plasmas.

The spatial truncation errors can be approximately measured by L/D, where D is the typical spatial size of 
magnetic structure and L is the size of tetrahedron of four SC. When L/D is very small, the truncation errors 
are generally small. However, as L/D grows large, the truncation errors may become significant. The itera-
tive operation allows us to attempt to get more accurate and reliable results.

Figure 6 compares the results of the calculations made with no iteration; with the first and second itera-
tions, and theoretical calculation with L/D = 0.3. It can be seen that the iterations yield more accurate re-
sults. However, the second iteration in these examples did not produce better results than the first iteration.

Figure 7 displays the variations of the relative errors of the results with L/D. The relative error is defined 

as 
 method real

real

X X
X

, where methodX  represents the results obtained with our method and X
real

 denotes the 

analytical results from the model. It is seen from Figures 7a–7e that the relative errors of the linear magnetic 
gradient, apparent velocity and curvature of the MFLs are of first order in L/D for no iteration calculations, 
but they are of second order in L/D after the first and second iterations. Nevertheless, the relative errors 
of the components of the quadratic magnetic gradient and the torsion of MFLs are all of first order in L/D 
(Figures 7f–7j), although after the first or second iterations they are improved.

Through the above analysis, one can conclude that the most accurate results are those derived by at least 
one iteration, especially when L/D is larger than 0.5. Thus, it is necessary to perform the first iteration when 
L/D is larger than 0.5.

In addition, we have performed a calculation on the modeled geomagnetosphere with no symmetry and 
presented the obtained results in the supplementary information, where the structure of the cusp regions 
has been demonstrated reasonably as in Figure S1 and S2.

5.  Application: Magnetic Flux Rope
In this section, we have applied the approach developed in Sections 2 and 3 to investigate the magnetic 
structure and geometry of a magnetic flux rope at magnetopause, observed by MMS during 2015-10-16 
13:04:33–13:04:35, which is the second of two sequential flux ropes reported by Eastwood et al., (2016), and 
has been analyzed by many researchers (e.g., C. Zhang et al., 2020). Here, we have used the high-resolution 
magnetic field data measured by the fluxgate magnetometer, operating at 128 vectors per second in burst-
mode (Burch et al., 2016; Russell et al., 2016), and the plasma data provided by FPI (fast plasma investiga-
tion, measuring electrons at cadence of 30 ms and ions at cadence of 150 ms) (Pollock et al., 2016; Torbert 
et al., 2015). To calculate the quadratic magnetic gradient, the plasma moments are interpolated to obtain a 
1/128 s time resolution to match that of the magnetic field data and to derive the current density. Note that 
the MMS constellation is often nearly a regular tetrahedron with its separation scale of L  20 km during 
this time interval.

Typically, there are many waves affecting the magnetic field at various frequencies in space plasmas. If we 
calculated the time variation rates of the magnetic field and the linear and quadratic magnetic gradients 
directly, the errors caused by these waves would be so large that we would miss the underlying global fea-
tures of the magnetic structure. To get rid of the influence of the waves, the magnetic field (Figure 8a) and 
current density (Figures 8b–8d) data have been filtered by a low-pass filter to eliminate disturbances with 
frequencies higher than 1 Hz from the data. In order to apply the method in Appendix A to calculate the 
temporal and spatial gradients of the magnetic field and current density, we have adopted n = 10 time points 
on each spacecraft to form a set of data. Thus, there are in total N = 4n = 40 points in a group of data. With 
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this approach, the calculated temporal and spatial gradients of the magnetic field and current density have 
rather high accuracy.

We have derived the magnetic rotation features of the flux rope by using the MRA method illustrated in 
Appendix B (Shen et al., 2007). Figure 8e shows the time series of the magnetic minimum rotation direc-
tion 3X̂ , which is approximately stable and nearly parallel to GSE + Y direction. Assuming the flux rope 
is cylindrically symmetric, 3X̂  could be approximately regarded as the orientation n̂ of the flux rope axis, 
that is,  3

ˆn̂ X . The helical angle of the MFLs can be defined as    sin ˆ ˆa b n . As shown in Figure 8f, the 
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Figure 6.  The comparison of those results with no iteration, first iteration and second iteration. Panel (a), (b), (c) are the time series of the linear gradients 
of magnetic field; Panel (d) denotes the relative velocity of S/Cs to the current sheet; Panel (e), (f), (g), (h) denote the time series of the quadratic gradients of 
magnetic vector, respectively. The magnetic field line curvature and torsion are displayed in Panel (i), (j), respectively. The vertical black dashed line in each 
panel represents the center of current sheet. The red circles in each panel denote the result of no iteration, while the green and blue circles mark the result from 
the first iteration and second iteration, respectively. The black solid lines represent analytic results.
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helical angle   reaches its maximum value (∼89°) at the time ∼34.1 s, implying that the MFLs lie basically 
along the axis orientation in the central part of the flux rope. The apparent velocity of the flux rope can be 
calculated by Equation 17, and is illustrated in Figure 8g. One can find that, the apparent velocity at the 
leading edge of flux rope is larger than that at the trailing edge, suggesting that the flux rope is decelerating 
and not stable during this interval. Assuming that the flux rope is steady and has a force-free magnetic 
field, Eastwood et al., (2016) have derived the parameters of this flux rope, and estimate that the velocity 
is [−206.976, −19.8, −162.88] km/s in GSE, as derived by timing analysis, the axis orientation is [−0.012, 
0.989, −0.149] in GSE and the radius is ∼550 km. From our analysis, it is shown that the mean velocity is 
∼[–141.408, −47.58, −96] km/s and the axis orientation is [–0.0889, 0.9367, −0.3386] in GSE during the 
interval (13:04:33.5–13:04:35), when the flux rope is nearly steady. Considering the complicated motion and 
structure of flux rope and the different data processing approaches applied, the small discrepancy among 
the results is not surprising.

By using the estimators in Sections 2 and 3, the magnetic gradients and geometry of the flux rope can be 
obtained and these are demonstrated in Figure 9. The total 27 components of the quadratic gradient of 
magnetic field have been obtained with the estimators in Section 2, which are illustrated in panels (a–i) of 
Figure 9. It can be found that the order of the quadratic gradient of the magnetic field is generally less than 
10−2 nT/km2, while that of the first-order magnetic gradient is ∼10−1 nT/km. The complete geometry of the 
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Figure 7.  The relative errors (y) of the various calculated parameters of the flux rope for different L/D (x). The red solid lines in each panel are the calculation 
results with no iteration, while the green, blue lines represent the calculation results with the first and second iterations, respectively.
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MFLs in the flux rope can be derived by the estimators in Section 3, which is illustrated in Figures 9j–9l. 
It can be seen that the curvature of MFLs reaches its minimum value of ∼0.80 × 10−3/km (Figure 9j) and 
the torsion reaches its maximum value of ∼0.012/km2 (Figure 9l) at ∼34.1 s, when the helical angle is the 
largest (Figure 8f). These features indicate that this flux rope is a typical one and is consistent with the 
2-D flux rope model in Appendix E. The maximum curvature of the MFLs is about ∼3.0 × 10−3/km, while 
accordingly the minimum radius of the curvature of the MFLs is ∼330 km. We can choose this as the char-
acteristic scale of the flux rope, that is, D = 330 km. Furthermore, assuming the flux rope has a cylindrical 
helical structure, the torsion of MFLs can also be obtained directly from the curvature and helical angle 
from Equation E9 in Appendix E. From Figure 9l, it can be seen that the results obtained by both techniques 
show good agreement with each other. Obviously, the magnetic field lines in this flux rope are right-hand 
spirals generally. These results verify the effectiveness and applicability of the estimators given in Sections 2 
and 3. Since L/D  20/330  0.06, we do not need to perform the iteration in this case because the accuracy 
of the linear results with no iteration is already very high.
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Figure 8.  The parameters of the flux rope observed by MMS3 on October 16, 2015. Panel (a) shows the magnetic field at the barycenter of tetrahedron; Panels 
(b–d) display the components of the current density at the four S/C derived by plasma data; Panel (e) denotes the minimum rotation direction of the magnetic 
field lines (MFLs), which is approximately the axis direction of the flux rope; Panel (f) represents the variation of the helical angle; Panel (g) shows the apparent 
velocity of the flux rope relative to the magnetospheric multiscale (MMS) constellation.
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6.  Summary and Discussions
The quadratic magnetic gradient is a key parameter of the magnetic field, with which the fine structure of 
a magnetic structure can be revealed, as well as the twisting property of the magnetic field. However, up to 
now, the quadratic magnetic gradient from multi-S/C constellation measurements has not been explicitly 
calculated. Chanteur (1998) showed that in order to get the quadratic magnetic gradient from multipoint 
magnetic observations, in general, the number of S/C in the constellation has to be equal to or larger than 
10, which is difficult to realize in present space exploration. Fortunately, the MMS constellation can not 
only provide rather accurate four-point magnetic field, but can also produce very good four-point current 
density estimates from particle measurements, such as to allow the quadratic magnetic gradient problem to 
be solved in the manner discussed here.

SHEN ET AL.

10.1029/2020JA028846

22 of 32

Figure 9.  The magnetic structure of the flux rope on October 16, 2015. Panel (a–i) show all the 27 components of the quadratic gradient of magnetic field, 
where the red, green and blue lines represent the partial derivative   , ,x y z, respectively; Panel (j) gives the time series of the curvature of the magnetic field 
lines (MFLs); Panel (k) represents the binormal direction of the MFLs; Panel (l) shows the torsion of the MFLs, with its value calculated by the magnetic 
gradients represented by the red line, and that drawn from the cylindrical symmetry approximation denoted by the black line.
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This paper provides a method to obtain the linear and quadratic magnetic gradients as well as the apparent 
velocity of the magnetic structure, based on the four-point magnetic field and current density observations 
and give their explicit estimators. Furthermore, the complete geometry of the magnetic field lines is re-
vealed on the bases of these linear and quadratic magnetic gradients, and the estimator for the torsion of the 
MFLs is given. Simple, but relevant, tests on this novel algorithm have been made for a Harris current sheet 
and a force-free flux rope model, and the effectiveness and accuracy of these estimators have been verified.

In this approach (NMG algorithm), the physical quantities to be determined are as follows: the magnetic 
field cB  (three parameters); the linear magnetic gradient  

c
B  (nine parameters); quadratic magnetic gra-

dient  
c

B  (6  3 = 18 parameters), and the apparent velocity of the magnetic structure V  (three param-
eters); resulting in a total of 3 + 9+18 + 3 = 33 undetermined parameters.

On the other hand, the input conditions for this algorithm are: the time series of magnetic field   tB  at 

four points (3  4 = 12 parameters); the transformation relationships     
t
B V B (three independent 

constraint equations) and      
t

B V B (3  3 = 9 independent constraint equations); the formu-

la      B j, derived from Ampere’s law (2  ×  3  −  1  =  5 independent constraints); the equation 
     0B , from the solenoidal condition of the magnetic field (3 − 1 = 2 independent constraints), and 

finally the constraint equations 
 


 3 3

0
X X pb , as deduced from MRA (two independent constraints); 

resulting in a total of 12 + 3+9 + 5+2 + 2 = 33 independent parameters or constraints.

We note that the contribution of the current density measurements in this approach is the first order gradi-
ent of the current density, which is related to the quadratic magnetic gradient by Ampere's law. Considering 
the conservation of the current density    0j  and  3 B already obtained from the constraint equation 

    

t
B V B, the constraint equation      B j yields only 2  ×  3  −  1  =  5 independent con-

straints (      3 3B j is not independent). Similarly,      0B  provides only 3 − 1 = 2 independent 
constraints.

Therefore, the linear and quadratic magnetic gradients, and the apparent velocity of the magnetic structure, 
can be completely determined based on the four-point magnetic field and current density measured by the 
MMS constellation.

The calculations have been expressed as being carried out in the S/C constellation frame. The NMG algo-
rithm proceeds as follows. First, under the linear approximation, the temporal and spatial gradients of the 

magnetic field ( 



,

t
BB ) and of the current density ( 




,
t
JJ ) at the barycenter of the S/C constellation can be 

obtained by the least squares gradient calculations as demonstrated in Appendix A. The time rate of change 

of the linear magnetic gradient,  


 ct
B , and the second order time derivative of the magnetic field can 

also be obtained. The apparent velocity of the magnetic structure relative to the S/C frame system can then 

be readily obtained with the formula     
t
B V B, and also the gradient of the linear magnetic gradient 

along the direction of motion,   3 c
B . With the constraint equation      B j, the transverse quad-

ratic magnetic gradient of the longitudinal magnetic field 3B ,    p 3 , 1,2qB p q , can be found. Finally, the 

transverse quadratic magnetic gradients of the transverse magnetic field,   p ,q s cB t r , can be obtained by 

using the constraint equations      0B ,      B j, and magnetic rotation feature  


 3 3
0pb

X X
. 

Therefore, all the 18 independent components of the quadratic magnetic gradient can be calculated.

The quadratic magnetic gradient, obtained with no iteration, has a truncation error of the first order in L/D 
because the linear approximation has been made. To find a more accurate quadratic magnetic gradient, 
an iterative procedure can be performed. In this procedure, the magnetic field, the linear magnetic gradi-
ent, and the time derivative of the linear magnetic gradient are corrected by using the quadratic magnetic 
gradient calculated initially and the above steps are then repeated, so as to achieve the components of the 
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corrected quadratic magnetic gradient. After this first iteration, the magnetic field, linear magnetic gradi-
ent, the apparent velocity of the magnetic structure at the barycenter of the S/C tetrahedron all have their 
accuracies improved significantly and have truncation errors in the second order of L/D, while the accuracy 
of the quadratic magnetic gradient obtained is also enhanced.

This algorithm is valid for both stationary and nonstationary structures, whether the magnetic structures 
are moving at a constant velocities or accelerating/decelerating. It is noted that the magnetic field, linear 
and quadratic magnetic gradients are identical for different inertial frames of reference.

With the magnetic field, linear and quadratic magnetic gradients found, the complete geometry of the MFLs 
can be determined, including the natural coordinates or Frenet coordinates (tangential unit vector, princi-
pal normal and binormal), curvature, and torsion. The corresponding estimators for the geometrical fea-
tures have been given.

The algorithm for estimating the quadratic magnetic gradient and the geometry of the MFLs have been 
demonstrated with the Harris current sheet and cylindrical flux rope, and its correctness has been verified. 
It is found that, the errors of the linear quadratic magnetic gradients, apparent velocity of the magnetic 
structure, and the geometrical parameters are of first order in L/D when no iteration is made. If one itera-
tion is performed, the accuracies of the linear magnetic gradient, apparent velocity of the magnetic struc-
ture, curvature of the MFLs are improved significantly and their errors appear at the second order in L/D, 
while the accuracies of the quadratic magnetic gradient and the torsion of the MFLs are also enhanced. 
To determine the first order magnetic gradient and apparent relative velocity of the magnetic structure, 
this algorithm is more accurate than the previous approaches based on the linearity approximation (Chan-
teur, 1998; Harvey, 1998; Shi et al., 2006).

We have also applied the algorithm developed in this research to investigate the magnetic structure of one 
flux rope measured by MMS (Eastwood et al., 2016), showing good results. The applicability of this ap-
proach is therefore verified.

If the magnetic gradients with orders higher than two are neglected the magnetic field can be expressed as

                     
1, , , , .
2c c c c c ct t t tB r B r r r B r r r r r B r� (65a)

with the MMS magnetic field and current density measurements, the linear and quadratic magnetic gradi-
ents at the barycenter are obtained, such that the local spatial distribution of the magnetic field, as well as 
the MFLs, can be obtained.

Appendix A:  The Explicit Estimators for the Linear Gradients of Field in 
Space and Time
De Keyser et al. (2007) has put forward an algorithm for calculating the gradients in space and time of a 
field, which they called Least-Squares Gradient Calculation (LSGC). Here we will find the explicit estimator 
of the four-dimensional linear gradients of a scalar field or one component of the vector field with correc-
tions from the quadratic gradients.

Considering the 4 S/C of the constellation obtained time series of measurements on a certain physical 
quantity investigated, as illustrated in Figure 1 in Section 2. Here the S/C constellation reference frame is 
used. Assuming each S/C makes observations at n times, in total N = 4n measurements are made by the 
constellation, which form a set of data. In the previous work of De Keyser, et al. (2007), it is supposed that, 
in this area of spacetime, the physical quantity concerned is approximately varying linearly, and the linear 
gradients of field in space and time are about homogeneous. Here, however, the homogeneity assumption 
is not necessary because the quadratic gradients have been included. In the S/C constellation coordinate 
system, the position of the observation point is       , , ; 1, 2, 3, 4a a a aax x y z t . It is convenient to use the 
dimensionless length and time in the investigation. If the characteristic size of the S/C constellation is L 
and the time resolution of the observations is T, we can make the transformation: /a ax L x , /a at T t . 
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Obviously, in the S/C constellation reference frame, the four S/C are nearly motionless and their space co-
ordinates     , ,i

a a aax x y z  do not change with time during typical structure crossing events.

In the S/C constellation reference frame, at the space time       , , ; 1, 2, 3, 4a a a aax x y z t , the physical 

quantity measured is    
   

  aaf x f , its gradients are 

     
         

, , ,f f f f ff
x y z tx

. The spacetime coor-

dinates at the central point satisfy

   
  

 

     
  x x x 0.ca a

N N

a 1 a 1
� (A1)

Thus the spacetime coordinates at the central point are

 
 


 

1 .c ax x
N

N

a 1
� (A2)

Here i
cx  are the space coordinates of the barycenter of the S/C constellation, which have fixed values and 

can be chosen as  0i
cx . 4

c cx t  is the average time of the 4n observations.

The physical quantity  af  measured at the point  

ax  can be expanded around the central point 

cx  as (The 

second Taylor series)

       
  

          
1
2c c ca a a af f x f x x f� (A3)

Or

       
  

      c
1G G
2a a a af f x x x� (A3a)

Here, the first order gradient    G
c

f , and the quadratic gradient      G
c

f . There are five pa-
rameters (    c,

c
f G f ) to be determined.

Construct the action

       
  

 
 

       
 


2

c
1 1

2a a a aS f x G x x G f
N a

� (A4)

To minimize it, let

  0.S� (A5)

Such as to obtain cf  and   G cf  at the central point. The above equation leads to

 

  
  

  
0, 0, 0.

c

S S S
f G G� (A6)

Since

       

       

  
 

  
 



  

 
         

            



  

c
N

1 12
2

1 1 12 2 0.

c a a a i

c a a a a

S f x G x x G f
f N

f f x G x x G
N N N

N

a 1
N N

a 1 a 1 a 1

� (A7)

Considering Equation A1, it reduces to

     
 

    a a a
a

1 1 .
2cf f x x G

N N

N

a
� (A8)

or

 


 c a
a

1 1 G .
2

f f R
N� (A8a)
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where the general volume tensor R  is defined as

              

 

       
   a

a

1 1 .c caa aR x x x x x x
N N

N N

1 a 1
� (A9)

Equation A8a gives the value of physical quantity f  at the barycenter of the constellation with corrections 
by the quadratic gradients.

Furthermore,

         

   

   
 



  
 


 



 
         

 

     





a a
a

a

1 10 2
2

12 2 ,

c a a a

a a

S f f x G x x G x
G N

f x R G R G
N

N

1
N

1

� (A10)

where the 3 order tensor R  is defined as

     
   


   

1 .a aaR x x x
N

N

a 1
� (A11)

From Equation A10 we get

 
   

 
    
  c aa

1 1 .
2

R G x x f R G
N

N

a
� (A12)

Thus the linear gradients at the central point are

         
  

 

        
 1 1

aac
a

1 1 .
2cG f R x x f R R G

N

N
� (A13)

Here 1R  satisfies      


 
  1 1R R R R . These are the first order gradients of the physical quan-

tity in space and time at the central point with corrections by the quadratic gradients.

Under the linear approximation, the quadratic gradient is neglected, that is,  G 0. From Equation A8a, 
the physical quantity at the central point is

  0 a
a

1 .f f
N� (A14)

From Equation A13, the first order gradients of the physical quantity in space and time are

     
 

 


       
 1

c a
1 .ac

G f R x x f
N

N

a
� (A15)

Appendix B:  Nature of the Magnetic Rotation Tensor
In previous investigations (Shen et  al.,  2007; Shen, Liu, et  al.,  2008; Shen, Rong, et  al,  2008), the MRA 
(magnetic rotation analysis) method has been put forward to study the three-dimensional rotational prop-
erties of the magnetic field. We may construct the magnetic rotational tensor S based on the gradient of the 
magnetic unit vector b̂, which is defined as   ij i l j lS b b . Because the tensor S is symmetrical ( ij jiS S , 

, 1, 2, 3i j ), it has three eigenvectors, 1X̂ , 2X̂  and 3X̂ , and three corresponding eigenvalues, 1, 2 and 3 
with     1 2 3 0. Actually, the third eigenvalue 3 is zero. Fadanelli et al. (2019) has presented one 
verification on this property of the magnetic rotational tensor. To facilitate the understanding, here we can 
show another verification as the following.

The length of b̂ is 1, and  ˆ ˆ 1b b , so that

        .ˆ 0ˆ
i i j jb bb b� (B1)
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To ensure the existence of b̂, it is necessary that

  Det 0.i jb� (B2)

Based on its definition, the determinant of the magnetic rotation tensor is

         Det Det Det 0.ij i l j lS b b� (B3)

On the other hand,

          1 2 3 1 2 3Det , 0.ijS� (B4)

Thus Equations A3 and A4 reduce to

 3 0.� (B5)

So that the third eigenvalue 3 of the magnetic rotation tensor   ij i l j lS b b  is null definitely.

Appendix C:  Another Verification on the Formula of Torsion of MFLs in 
Terms of Magnetic Gradients
Based on the definition, the torsion of the MFLs








 

 
  

 
 

      
 

2 2

2 2

1 d

1 d d .

1 1 d

ˆ

d 1 d d

ˆ

12 ˆ

ds

ds ds B

B ds B ds Bds ds

N

N

κ

B N

B B B

� (C1)

Due to   0N̂B , 
   

              

d 0
ˆˆ ˆ ˆ ˆ ˆd dB dBB B

ds ds ds ds
B bN b N b Nκ , the second and third terms at the left 

hand of the above formula disappear. Therefore




 
2

2
1 .ˆd
B ds

NB� (C2)

This gives the relationship between the torsion of the MFLs and the second order derivative of the magnetic 
field along the MFLs.

Furthermore, the torsion of the MFLs becomes






 
   

 
    

          
    

i

i i i

1 1

1 1 1 1

ˆ

.ˆ

i

i i i

d B
B ds B

d d dB B B
B ds B B ds B ds

N

N

B

B B B
� (C3)

The first term at the left hand of the above formula disappears because      i 0ˆ ˆ
i

dB B
ds

N NB B  as al-

ready shown below Equation C1. So that the torsion




 

  
      

  

     

i i

i i3 3

1 1 1

1 1 .

ˆ
i i

m n n i m m n n i m

d dB B
B B ds B ds

N B B B N B B B
B B

N B B
� (C4)

Appendix D:  Geometry of the MFLs in One-Dimensional Current Sheets
Here, the properties of the one-dimensional current sheets are the update to the results in Appendix D in 
the previous study (Shen et al., 2003). It is assumed that the magnetic field in the 1 dimensional current 
sheets is   ˆ ˆ ˆx x y y z zB B Be e eB . Let the z axis to be along the normal to the 1 dimensional current sheets. 
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The components of the magnetic field in the x and y directions are invariants, that is,    x 0, 0y . There-
fore the components of the magnetic field in the Cartesian coordinates are

  
 

 
  

0

z

B
Const.
Const.

x

y

B z
B
B

� (D1)

We may choose that  0zB , 0 0B ,    z 0 0xB B z . As for the Harris current sheets (Harris, 1962), the 
function     z tanh /z h , where h is the half width of the current sheets. The total magnetic strength is 

   
1/22 2 2

x y zB B B B .

The curvature of the MFLs is

   

 
 



  

      

       

2 4 2

4 2 2

ˆ ˆ

ˆ
2

ˆ ˆ

1

z z x y z x x y y x z z

B B B

B B B B B B B B B

b b

e e e

κ

B B B B� (D2)

The value of the curvature is

    
1/23 2 2 .z y z z xB B B B B� (D3)

The radius of the curvature is  1 /cR .

The principal normal vector is

             

1/21 2 2 2 2/ .ˆ ˆ ˆ ˆy z y z x x y y x z zB B B B B B B B BK e e eκ� (D4)

The binormal vector is

         
1/21 2 2 .ˆ ˆ ˆ ˆ ˆ ˆy z z y y zB B B B BN b K K e eB� (D5)

Therefore, the binormal of the MFLs is constant. Then, based on the definition (58), the torsion of MFLs is




   
1 0.

ˆd
ds
Nκ� (D6)

So that, the MFLs in the current sheets as formulated by (D1) are plane curves. For the asymmetric current 
sheet,         tanh / ,1 0.z z h  As for the shock fronts,  0yB , and        tanh / , 1z z h . 
For these cases, the MFLs are plane curves with zero torsion.

However, as shown in actual observations, the component yB  is not constant, which maximizes at the center 
of neutral sheets and is decreasing away from the center of the current sheets (Rong, et al., 2012). The MFLs 
in the magnetotail current sheets often have a shape of helix in the neutral sheets (Shen, Liu, et al., 2008).

Appendix E:  Geometry of Cylindrical Helical MFLs in Magnetic Flux Ropes 
With Axial Symmetry
Cylindrical spiral MFLs are common in space plasmas, as seen in FTEs (Lee et al., 1985; Liu & Hu, 1988; 
Russell & Elphic, 1979; Y. Liu et al., 2018; Lockwood & Hapgood, 1998; Wang et al., 2007) or flux ropes 
caused by local magnetic reconnection processes (Kivelson et al., 1995; Pu et al., 2005; Sibeck, et al., 1984; 
Slavin et al., 1989; Slavin et al., 2003; Zong et al., 2004; Y. C. Zhang et al., 2007), fast tailward escaping plam-
oids (Slavin et al., 1989; Slavin et al., 1995), etc.

As shown in Figure E1, polar coordinates are used. The central axis is along the z axis, the arc length is s, 
the distance from the central axis is r, and the azimuthal angle is  .The radial unit vector is ˆ re , and the azi-
muthal unit vector is ê . The tangent vector of the MFLs is

    ,ˆ ˆ/ cos sin ˆ zBb e eB� (E1)
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where   is the helix angle of the MFLs. The helical pitch is   2 tanp r . Define the rotation frequency 

  / sd d . Then,        / s 2 / / sin cos /p r . Thus,

� (E2)

The curvature of the MFLs is

    
 

    
d d cos cos .

ˆ ˆ ˆ
ˆ r

dd
ds ds d d

eb b eκ� (E3)

where, 
 

d ˆ ˆrd
e e  is used.

The value of the curvature is

      2 1 2cos cos .r r� (E4)

The radius of curvature is

  


2
cos .cR r� (E5)

The principal vector of the helical MFLs is   ˆ / ˆrK eκ , that is along the radial direction. The binormal 
N̂ is

      cos sin .ˆ ˆ ˆ ˆ ˆzN b K e e� (E6)

The variation rate of the binormal N̂ along the MFLs is

      
 

     sin sin .
ˆ ˆ ˆ

ˆ r
dd d d

ds ds d d
eN N e� (E7)

  
 

d 1 .
cos

s r
d
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Figure E1.  Demonstration on the cylindrical spiral magnetic field lines (MFLs).
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So that the torsion of the helical MFLs is

            1 1 2sin sin cos 2 sin .
ˆˆ d r p

ds
NK� (E8)

On the contrary, if the curvature   and torsion   of the cylindrical spiral MFLs have been measured, the he-
lix angle, the distance from the central axis, the spiral pitch and the rotation frequency can be expressed as

 


 tan ,cR� (E9)

� (E10)

� (E11)

� (E12)

Any arbitrary magnetic field line can locally be fitted by a cylindrical spiral arc with the same curvature 
and torsion. The curvatures of the magnetic field lines are always nonnegative. However, the torsion of one 
MFL can be either positive or negative. When   0, the helix angle   0, the magnetic field line is locally 
a right-hand cylindrical spiral; while   0,   0, it is a left-hand one.

Data Availability Statement
The MMS data (https://cdaweb.gsfc.nasa.gov/). The codes for the algorithm are available at the website: 
http://doi.org/10.5281/zenodo.4678127.
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